Slide-18

Dr. Riaz Hasan
Department of Chemistry
DSPMUniversity, Ranchi, JH-India

 $BL \longrightarrow P \alpha 1/V$ 

## Charles' Law (Temp.-Vol. Relationship)

## **Charles and Gay Lussac**



For a fixed mass of a gas[m] at constant P, volume of a gas increases on increasing temperature and decreases on cooling.

for a fixed mass of gas at constt. P

T incr and V incr T decc and Vdecr

They found that for 1°C rise in temperature, volume of a gas increases by 1/273.15 [new volume , $V_t$ ] from the original volume [ $V_0$ ] of the gas that is kept at 0 °C.

New Volume =  $V_1 = V_0 + 1/273.15$  at increase of 1°C rise

Thus if the volumes of the gas at 0 °C is  $V_0$  and at 1°C rise = t °C is  $V_t$  respectively, then

$$V_{\rm t} = V_{\rm 0} + \frac{\rm t}{273.15} V_{\rm 0}$$
  
 $\Rightarrow V_{\rm t} = V_{\rm 0} \left( 1 + \frac{\rm t}{273.15} \right)$ 

$$\Rightarrow V_{\rm t} = V_0 \left( \frac{273.15 + t}{273.15} \right) \tag{5.6}$$

If we write  $T_t = 273.15 + t$  and  $T_0 = 273.15$ 

$$V_{t} = V_{0} \left(\frac{T_{t}}{T_{0}}\right)$$

$$\Rightarrow \frac{V_{t}}{V_{0}} = \frac{T_{t}}{T_{0}}$$
(5.7)

Note